Big Data Processing Methods in GIS

Authors

  • Irada Seyidova Azerbaijan University of Oil and Industry, Department of Computer Engineering. Azerbaijan Author
  • Elgun Gamzaev Azerbaijan University of Oil and Industry, Department of Computer Engineering. Azerbaijan Author

DOI:

https://doi.org/10.56294/la2025183

Keywords:

Big data, Geographic information systems, Recurrent neural networks, Forecasting, Machine learning

Abstract

The article discusses methods for processing big data in geographic information systems (GIS) with an emphasis on the use of recurrent neural networks (RNN) for forecasting geospatial processes. Modern approaches are described, including distributed computing on clusters (Hadoop, Spark) and cloud platforms (Google Earth Engine), providing efficient processing of spatial data. Particular attention is paid to RNN architectures, such as LSTM, their application in temporal forecasting problems (weather, transport, land use) and comparison with traditional methods. The article provides a numerical example illustrating the use of RNN for time series forecasting, with an accuracy analysis and visualization of the results.

References

1. ArcGIS GeoAnalytics Server – What is ArcGIS GeoAnalytics Server? (Doc. ArcGIS Enterprise 11.2).

2. Eldawy A., Mokbel M.F. (2015). SpatialHadoop: A MapReduce Framework for Spatial Data. 31st IEEE International Conference on Data Engineering.

3. Fan, J., Bai, J., Li, Z., Ortiz-Bobea, A., & Gomes, C. P. (2022). A GNN-RNN approach for harnessing geospatial and temporal information: Application to crop yield prediction. arXiv. https://arxiv.org/abs/2111.08900

4. Google Earth Engine – Overview (2017). Google Developers.

5. https://discuss.pytorch.org/t/time-series-the-prediction-result-of-lstm-is-approximately-straight-line/98896

6. Olasz A., Nguyen Thai B. (2016). Geospatial Big Data processing in an open source distributed computing environment. PeerJ Preprints, 4:e2226v1.

7. Sun, Z., Zhang, H., Liu, Z., Xu, C., & Wang, L. (2016). Migrating GIS big data computing from Hadoop to Spark: An exemplary study using Twitter. 2016 IEEE 9th International Conference on Cloud Computing (CLOUD). IEEE. https://ieeexplore.ieee.org/document/7820291

8. Van Duynhoven A. et al. (2021). Exploring the Sensitivity of RNN Models for Forecasting Land Cover Change. Land, 10(3), 282.

9. Werner M. (2019). Parallel Processing Strategies for Big Geospatial Data. Frontiers in Big Data, 2:44.

10. Zang Z. et al. (2023). A Modified RNN-Based Deep Learning Method for Prediction of Atmospheric Visibility. Remote Sensing, 15(3), 553.

11. Chen Y. Smart Urban and Rural Planning Decision Support System Based on GIS and Geographic Information Big Data. 2024 International Conference on Power, Electrical Engineering, Electronics and Control (PEEEC), 2024, p. 678-82. https://doi.org/10.1109/PEEEC63877.2024.00128.

12. Zhang L, He W, Guo Y, Teng X. A Smart Application Frame of Remote Sensing in Non-grain Production Data Governance. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2024;XLVIII-1-2024:849-54. https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-849-2024.

13. Yang J, Fricker P, Jung A. From intangible to tangible : The role of big data and machine learning in walkability studies. Computers, Environment and Urban Systems 2024;109:1-20. https://doi.org/10.1016/j.compenvurbsys.2024.102087.

14. Wong ATT. Opportunities and Challenges of Big Data Analytics in Crime Investigation. International Annals of Criminology 2025:1-15. https://doi.org/10.1017/cri.2025.3.

15. Ju C, Huang H. Rural Ecological Environment Monitoring and VR Visualization Analysis of Jilin Province Supported By Big Data. Procedia Computer Science 2024;243:558-66. https://doi.org/10.1016/j.procs.2024.09.068.

16. Chang L, Zhi Y, Binbin Z, Sihang Z. Wildfire risk assessment using multi-source remote sensing data and GIS. 2024 IEEE 4th International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), vol. 4, 2024, p. 420-7. https://doi.org/10.1109/ICIBA62489.2024.10868308.

17. Rajeev A, Shah R, Shah P, Shah M, Nanavaty R. The Potential of Big Data and Machine Learning for Ground Water Quality Assessment and Prediction. Arch Computat Methods Eng 2025;32:927-41. https://doi.org/10.1007/s11831-024-10156-w.

18. Wu J, Gan W, Chao H-C, Yu PS. Geospatial Big Data: Survey and Challenges. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2024;17:17007-20. https://doi.org/10.1109/JSTARS.2024.3438376.

19. Yang S. Strengthening Accounting Information Systems with Advanced Big Data Mining Algorithms: Innovative Exploration of Data Cleaning and Conversion Automation. Informatica 2025;49. https://doi.org/10.31449/inf.v49i11.7302.

20. Xiong R, Song F, Fan Y. Strategies Research on Comprehensive Energy Service Based on Electric Power Big Data. En: Hung JC, Yen N, Chang J-W, editores. Frontier Computing: Vol 3, Singapore: Springer Nature; 2025, p. 347-55. https://doi.org/10.1007/978-981-96-2798-1_38.

21. Djokić V, Djordjević A, Milovanović A. Big data and urban form: a systematic review. J Big Data 2025;12:17. https://doi.org/10.1186/s40537-025-01084-y.

22. Genale AS. Big Data Analytics for Geospatial Application Using Python. Ethics, Machine Learning, and Python in Geospatial Analysis, IGI Global Scientific Publishing; 2024, p. 254-78. https://doi.org/10.4018/979-8-3693-6381-2.ch011.

23. Liu D, Qian X, Yang H. The Application of Big Data Technology in Monitoring and Analyzing the Operation of Economic Policies. En: Gupta R, Bartolucci F, Katsikis VN, Patnaik S, editores. Recent Advancements in Computational Finance and Business Analytics, Cham: Springer Nature Switzerland; 2024, p. 472-82. https://doi.org/10.1007/978-3-031-70598-4_43.

24. Singh S, Reddy KS, Bhowmick MK, Srivastava AK, Kumar S, Peramaiyan P. Accelerating Climate Adaptation with Big Data Analytics and ICTs. En: Pathak H, Lakra WS, Gopalakrishnan A, Bansal KC, editores. Advances in Agri-Food Systems: Volume I, Singapore: Springer Nature; 2025, p. 179-96. https://doi.org/10.1007/978-981-96-0759-4_10.

25. Zheng N, Chen W. The Environmental Status Assessment Modelof Artificial Wetlands Basedon Big Data Technology. Pol J Environ Stud 2025. https://doi.org/10.15244/pjoes/202575.

26. Li L, Jia L. Complex Event Information Mining and Processing for Massive Aerospace Big Data. Scalable Computing: Practice and Experience 2024;25:2540-7. https://doi.org/10.12694/scpe.v25i4.2832.

27. Xue S. Building Material Defect Detection and Diagnosis Method Based on Big Data and Deep Learning. Informatica 2024;48. https://doi.org/10.31449/inf.v48i16.6433.

28. Selmy SAH, Kucher DE, Yang Y, García-Navarro FJ, Selmy SAH, Kucher DE, et al. Geospatial Data: Acquisition, Applications, and Challenges. Exploring Remote Sensing - Methods and Applications, IntechOpen; 2024. https://doi.org/10.5772/intechopen.1006635.

29. Adhikari BK, Mahajan R. Leveraging Big Data Analytics to Enhance Water, Sanitation, and Hygiene (WASH) Systems. Amrit Research Journal 2024;5:98-106. https://doi.org/10.3126/arj.v5i1.73556.

30. Yang L, Ye H. Application and Research of Key Technologies of Big Data for Agriculture. IJISSCM 2024;17:1-20. https://doi.org/10.4018/IJISSCM.344038.

31. Dritsas E, Trigka M. Remote Sensing and Geospatial Analysis in the Big Data Era: A Survey. Remote Sensing 2025;17:550. https://doi.org/10.3390/rs17030550.

32. Zhang J, Lin J, Wu T. An Interval Intuitionistic Fuzzy Characterization Method Based on Heterogeneous Big Data and Its Application in Forest Land Quality Assessment. Int J Fuzzy Syst 2025;27:558-81. https://doi.org/10.1007/s40815-024-01765-5.

Downloads

Published

2025-05-13

How to Cite

1.
Seyidova I, Gamzaev E. Big Data Processing Methods in GIS. Land and Architecture [Internet]. 2025 May 13 [cited 2025 Oct. 14];4:183. Available from: https://la.ageditor.ar/index.php/la/article/view/183