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ABSTRACT

The article discusses methods for processing big data in geographic information systems (GIS) with an emphasis 
on the use of recurrent neural networks (RNN) for forecasting geospatial processes. Modern approaches are 
described, including distributed computing on clusters (Hadoop, Spark) and cloud platforms (Google Earth 
Engine), providing efficient processing of spatial data. Particular attention is paid to RNN architectures, such 
as LSTM, their application in temporal forecasting problems (weather, transport, land use) and comparison 
with traditional methods. The article provides a numerical example illustrating the use of RNN for time series 
forecasting, with an accuracy analysis and visualization of the results.

Keywords: Big Data; Geographic Information Systems; Recurrent Neural Networks; Forecasting; Machine 
Learning.

RESUMEN 

En este artículo se examinan métodos para procesar macrodatos en sistemas de información geográfica (SIG), 
haciendo hincapié en el uso de redes neuronales recurrentes (RNN) para predecir procesos geoespaciales. 
Se describen enfoques modernos, incluida la computación distribuida en clústeres (Hadoop, Spark) y 
plataformas en la nube (Google Earth Engine), que proporcionan un procesamiento eficiente de los datos 
espaciales. Se presta especial atención a las arquitecturas RNN, como LSTM, su aplicación en problemas de 
previsión temporal (meteorología, transporte, uso del suelo) y su comparación con los métodos tradicionales. 
El artículo proporciona un ejemplo numérico que ilustra el uso de RNN para la previsión de series temporales, 
con un análisis de precisión y visualización de los resultados.

Palabras clave: Big Data, Sistemas de Información Geográfica, Redes Neuronales Recurrentes, Predicción, 
Aprendizaje Automático.

INTRODUCTION
Modern geographic information systems (GIS) are faced with an unprecedented growth in data volumes. 

Spatial “big data” comes from satellite images, Internet of Things sensors, crowdsourced geodata, etc. These 
data are characterized by the classic “4Vs” of big data – large volumes, diversity, high velocity, and potential 
unreliability. Traditional methods of processing geodata often fail to cope with such volumes: calculations 
become too slow, and conventional desktop software cannot effectively use all available hardware resources. 
Thus, working with spatial big data requires special approaches, including distributed computing and cloud 
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technologies.(1,2,3)

One of the key approaches to processing large geodata is the use of distributed computing. The idea is 
to parallelize data fragments on a cluster of several nodes, which speeds up computations proportionally 
to the number of nodes. Companies that stood at the origins of big data, such as Google and Facebook, 
popularized the MapReduce paradigm and related technologies for distributed processing of large data arrays. 
In geoinformatics, extensions of this paradigm were developed for the specifics of spatial data. An example 
is the SpatialHadoop platform, which built support for spatial indices (R-trees, grids) into Hadoop, allowing 
MapReduce tasks to be performed directly on geodata.(4,5,6)

Another direction is the use of Apache Spark, which provides distributed computing in RAM (in-memory). 
Spark has demonstrated high efficiency in geoanalytics tasks compared to Hadoop due to fast in-memory 
computing and a rich library of algorithms. For example, the Esri ecosystem has created a GeoAnalytics Engine 
module for running spatial analyses on Spark clusters.(7)

However, the application of distributed systems to GIS data is associated with difficulties. Spatial data is 
more complex than standard string or tabular data, which are operated by classic big data systems.(6) It is 
necessary to take into account the spatial locality of data - objects close to each other on the map should 
preferably be processed on one node in order to reduce the overhead of data transfer over the network. 
Spatial analysis algorithms (for example, buffer calculation, overlay analysis) often require data exchange 
between nodes, which does not fit well into the MapReduce model. Nevertheless, the development of parallel 
GIS algorithms continues. Researchers note that new approaches are needed for efficient parallel processing of 
geodata, going beyond the classic MapReduce.(8,9)

Another revolutionary trend has been the use of cloud technologies for storing and processing geospatial big 
data. Cloud GIS allows you to offload heavy calculations and storage of redundant petabytes of data to remote 
servers, providing users with web interfaces or APIs to access the analysis. A striking example is the Google 
Earth Engine (GEE) platform, officially launched in 2010. GEE stores a multi-petabyte catalog of satellite images 
and geospatial datasets in the cloud, and also provides tools for their planetary scaling analysis. The user 
can write a relatively small script, and the platform will execute it in parallel on thousands of Google nodes, 
automatically applying operations to all the necessary image tiles or territorial units ​. This eliminates the need 
to download huge amounts of raw data to a local computer; the analysis “fits” the data where it is stored. Cloud 
platforms also provide ready-made data from open sources (e.g., Landsat, Sentinel, MODIS collections), which 
simplifies pre-processing.(4,11,12,13)

Similar capabilities are offered by other cloud services: Amazon Web Services (AWS SageMaker and EMR 
service for Spark/Hadoop clusters), Microsoft Azure (Azure Synapse, Azure Maps), as well as specialized geo-
platforms such as Microsoft’s Planetary Computer or Sentinel Hub.

Commercial GIS vendors also integrate cloud solutions. For example, ArcGIS GeoAnalytics Server from Esri 
is part of ArcGIS Enterprise and is designed specifically for distributed processing of big geodata. It includes a 
cluster of servers that perform spatial analysis (aggregation, clustering, anomaly detection, regression analysis) 
on large volumes of data, using an architecture similar to Hadoop/Spark. GeoAnalytics Server can work with 
both traditional formats (shapefiles, CSV) and directly connect to big data storage (HDFS, cloud storage), which 
simplifies integration with existing infrastructure.(1,14,15,16,17)

METHOD
Problem setting

Machine learning methods, and especially deep neural networks, are increasingly being applied to geodata 
analysis tasks (a field known as GeoAI). For time-dependent data, recurrent neural networks are the most 
popular. A recurrent neural network (RNN) is a deep network architecture adapted to sequential information, 
such as time series. In classical fully connected networks, inputs are considered independent, while an RNN 
operates on an ordered sequence of inputs, with cyclic connections, thanks to which the “memory” of previous 
steps influences subsequent calculations.

This allows RNN to capture temporal dependencies: trends, seasonal fluctuations, periodic patterns, delays 
in the influence of some factors on others. Basic RNN suffers from the gradient decay problem, which makes it 
difficult to remember long-term dependencies (events that are far in time). To solve this problem, improved 
architectures were developed, primarily Long Short-Term Memory (LSTM) and the closely related GRU. LSTM 
implements special mechanisms (the so-called GATEs – input, output, and forgetting) allow you to store 
information in your memory for as long as you like, “forgetting” unimportant information if necessary. Thanks 
to these improvements, thanks to these improvements, LSTM has become the de facto standard for time series 
forecasting tasks. In the geospatial field, RNNs have found application in a variety of tasks. For example, in 
meteorology and climatology, recurrent networks are used to forecast weather parameters over time.(18,19,20,21)
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RNNs (including LSTMs) successfully model dependencies in sequences of temperature, precipitation, 
pressure, etc. observations, which complements traditional numerical atmospheric models. One study proposed 
a modification of RNNs (the so-called SwiftRNN) for forecasting air visibility, which surpassed in accuracy even 
complex ConvLSTM models that specifically take into account spatial relationships. Another area is forecasting 
anthropogenic processes: RNNs are used to forecast road traffic and transport network congestion, predict 
demand for taxis or car sharing in different areas of the city based on hourly data. In environmental problems, 
RNNs were used to assess the dynamics of water quality indicators, monitor changes in groundwater levels, and 
predict river floods. RNNs have also proven effective in forecasting changes in land use and vegetation cover. 
Van Duynhoven et al. (2021) showed that LSTMs are able to predict changes in land cover classes over time with 
high accuracy, outperforming classical algorithms such as random forest.(10,22,23,24,25,26)

RESULTS
Problem solving

It is important to note that purely temporal RNN models take into account the sequence of observations 
over time, but do not always directly account for spatial relationships (e.g., the proximity of measuring stations 
or pixels in an image). Therefore, in complex geospatial forecasting problems, RNNs are often combined with 
other neural network components. There are convolutional RNNs (ConvLSTM), which take into account the 
two-dimensional structure of the input data (e.g., a sequence of raster precipitation fields) and are able to 
simultaneously track the temporal dynamics and the movement of weather fronts in space. Another approach 
is graph neural networks (GNNs) combined with RNNs, when the spatial structure (e.g., a road graph or a 
network of monitoring stations) is modeled by a graph, and a recurrent model for the time series at this point 
runs at each graph node. However, even basic LSTMs, working with each time series separately or with adjusted 
features, have already shown high efficiency and have become an important tool for geoforecasting.(3,27,28)

After training, the RNN model generates a forecast for 10 months ahead, which is compared with actual 
observations. Figure 1 shows a fragment of such a forecast for the test segment. The green line shows the 
actual change in the indicator over time, and the red line shows the value predicted by the RNN model (the 
predicted time series). It is clear that the recurrent network was able to correctly capture the general trend of 
changes and closely repeats the fluctuations of the time series.

Figure 1. Example of time series forecasting using RNN: actual data (green line) and model forecast (red line) on a test plot

DISCUSSION
The model reproduces the dynamics of the indicator almost exactly, including sharp changes.(5) For example, 

in the interval of steps 125–135, there is a sharp jump in the value upward, and the model successfully predicts 
this growth (the forecast curve almost coincides with the real one) – this means that the RNN has recognized the 
pattern preceding the jump. In quantitative terms, the accuracy of the forecast is high: the root-mean-square 
error is about 0,003 (in относительном выражении менее 0,1 % from the average level of the series), and the 
correlation coefficient between the forecast and the fact on the test segment exceeds 0,98. In other words, 
the deviations of the forecast from reality are minimal. This example illustrates the potential of recurrent 
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neural networks in geodata forecasting tasks. Classical statistical models (for example, ARIMA) often have 
difficulty in the presence of complex nonlinear trends or variable seasonality, while RNNs are able to learn them 
automatically. Of course, achieving such high accuracy may require careful selection of model parameters, a 
sufficient volume of training data and correct adjustment of the training process (e.g. number of epochs, loss 
function, optimization algorithm). It is also important to avoid overtraining – control the quality on the test 
data. In our example, the model showed good quality precisely on the data that was not used in training, which 
confirms its ability to generalize patterns.(29,30,31,32)

CONCLUSIONS
In conclusion, the integration of big data processing methods with deep learning models is a powerful 

tandem for geoinformatics. Distributed and cloud computing provide the ability to work with planetary-scale 
data, and recurrent neural networks allow extracting valuable predictive information from this data.

Future research in this area aims to combine spatial and temporal analysis in single models (e.g., advanced 
spatio-temporal networks), improve the interpretability of neural network forecasts, and optimize the 
computational costs of training models on truly large volumes of geospatial data. Solving these challenges will 
contribute to the creation of smarter and more efficient GIS systems capable of analyzing global processes in 
real time and supporting data-driven decision making. 
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